Database Auditing: Best Practices

Rob Barnes, CISA
Director of Security, Risk and Compliance Operations
rbarnes@appsecinc.com
Verizon 2009 Data Breach Investigations Report:

285 million records were compromised in 2008
This Session’s Agenda

• **Introduction**
 – Database Vulnerabilities are the New Front-Lines
 – Factors that Drive Requirements for Database Auditing

• **Attacking Where the Data Resides**
 – Planning an Attack
 – Attacking Database Vulnerabilities

• **Database Auditing**
 – Securing Your Databases
 – Database Auditing and Forensics
 – Best Practices
Recent Breaches

<table>
<thead>
<tr>
<th>Company/Organization</th>
<th># of Affected Customers</th>
<th>Date of Initial Disclosure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heartland Payment Systems</td>
<td>100,000,000</td>
<td>20-Jan-09</td>
</tr>
<tr>
<td>Monster.com</td>
<td>Unknown</td>
<td>23-Jan-09</td>
</tr>
<tr>
<td>phpBB.com</td>
<td>400,000</td>
<td>5-Feb-09</td>
</tr>
<tr>
<td>University of Alabama</td>
<td>37,000</td>
<td>13-Feb-09</td>
</tr>
<tr>
<td>CVS Pharmacies</td>
<td>Unknown</td>
<td>18-Feb-09</td>
</tr>
<tr>
<td>Arkansas Department of Information Systems</td>
<td>807,000</td>
<td>20-Feb-09</td>
</tr>
<tr>
<td>Idaho National Laboratory</td>
<td>59,000</td>
<td>7-Mar-09</td>
</tr>
<tr>
<td>US Army</td>
<td>1,600</td>
<td>12-Mar-09</td>
</tr>
<tr>
<td>Symantec</td>
<td>200</td>
<td>31-Mar-09</td>
</tr>
<tr>
<td>Metro Nashville School/Public Consulting Group</td>
<td>18,000</td>
<td>8-Apr-09</td>
</tr>
<tr>
<td>Peninsula Orthopedic Associates</td>
<td>100,000</td>
<td>11-Apr-09</td>
</tr>
</tbody>
</table>

Etc, etc, etc.

Source: Privacy Rights Clearinghouse: http://www.privacyrights.org/ar/ChronDataBreaches.htm
Databases Are Under Attack

- **February 2005 to March 2009**
- **Total Affected Customers:** 355,547,925+
 - Literally hundreds of incidents
 - Victims include financial institutions, government agencies, retailers, healthcare providers, universities, manufacturing, consulting and audit firms ….
- **Incidents reported almost every day**
 - Already over 100,000,000 records stolen in 2009!

Source: http://www.privacyrights.org/ar/ChronDataBreaches.htm
The Threats to Enterprise Data Continue to Rise

- The database security landscape has changed:
- Attacks are targeting the database where records can be harvested in bulk on a global scale
- Perimeter security measures are necessary but not sufficient
What Do The Numbers Tell Us?

- **84%** Percent of companies that feel database security is adequate
- **56%** Percent of the same companies that experienced a breach in the last 12 months
- **73%** Percent of companies that predict database attacks will increase

Enterprises are Plagued by a False Sense of Security

Don’t wonder if your data is protected, *Know* it’s protected
To Make Matters Worse - Threats Are Very Real

Database Security: Recent Findings

- Only 1 out of 4 databases are locked down against attacks.

Source: 2008 IOUG Data Security Report, Joe McKendrick, Research Analyst
Data Breach Costs Are Rising

253 million records breached
X 202 per record
--
Equals
--
$51.1 billion
breach related costs

Cost Per Exposed Record

<table>
<thead>
<tr>
<th>Year</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>$138</td>
<td>$181</td>
<td>$197</td>
<td>$202</td>
</tr>
</tbody>
</table>

Ponemon Research
Costs to the Breached Organization

- $202 per record breached
- 2008 average total per-incident costs were $6.65 million
- More than 84% of cases involved organizations that had more than one data breach in 2008
- 88% of all cases in this year’s study involved insider negligence

- 2009 Annual Cost of a Data Breach Study (Ponemon Institute)
To Make Matters Worse - Threats Are Very Real

Database Security: Recent Findings

• One out of five respondents expects a data breach or incident over the coming year.
• “...few have addressed the key vulnerabilities stemming from exposure of data to internal sources.”
• “...only a minority has addressed security to monitor "super users"—such as administrators with heightened access privileges—either onsite or offsite.”

Source: 2008 IOUG Data Security Report, Joe McKendrick, Research Analyst
Database Vulnerabilities
Common Database Threats

Database Vulnerabilities:
• Default accounts and passwords
• Easily guessed passwords
• Missing Patches
• Misconfigurations
• Excessive Privileges

External Threats:
• Web application attacks (SQL-injection)
• Insider mistakes
• Weak or non-existent audit controls
• Social engineering
Database Vulnerabilities

<table>
<thead>
<tr>
<th></th>
<th>Oracle</th>
<th>Microsoft SQL Server</th>
<th>Sybase</th>
<th>IBM DB2</th>
<th>MySQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default & Weak Passwords</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Denial of Services & Buffer Overflows</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Misconfigurations & Privilege Management Issues</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Database Vulnerabilities: Default & Weak Passwords

- Databases have their own user accounts and passwords

<table>
<thead>
<tr>
<th></th>
<th>Oracle</th>
<th>Microsoft SQL Server</th>
<th>Sybase</th>
<th>IBM DB2</th>
<th>MySQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default & Weak Passwords</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Database Vulnerabilities: Default & Weak Passwords

• Oracle Defaults (hundreds of them)
 - User Account: system / Password: manager
 - User Account: sys / Password: change_on_install
 - User Account: dbsnmp / Password: dbsnmp

• Microsoft SQL Server & Sybase Defaults
 - User Account: SA / Password: null

• It is important that you have all of the proper safeguards against password crackers because:
 - Not all databases have Account Lockout
 - Database Login activity is seldom monitored
 - Scripts and Tools for exploiting weak passwords are widely available
Database Vulnerabilities: Missing Patches

- Databases have their own DoS’s & Buffer Overflows

<table>
<thead>
<tr>
<th></th>
<th>Oracle</th>
<th>Microsoft SQL Server</th>
<th>Sybase</th>
<th>IBM DB2</th>
<th>MySQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default & Weak Passwords</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Missing Patches</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Database Vulnerabilities: Missing Patches

- Privilege Escalation
 - Become a DBA or equivalent privileged user

- Denial of Service Attacks
 - Result in the database crashing or failing to respond to connect requests or SQL Queries.

- Buffer Overflow Attacks
 - Result in an unauthorized user causing the application to perform an action the application was not intended to perform.
 - Can allow arbitrary commands to be executed no matter how strongly you’ve set passwords and other authentication features.
Misconfigurations

- Misconfigurations can make a database vulnerable

<table>
<thead>
<tr>
<th></th>
<th>Oracle</th>
<th>Microsoft SQL Server</th>
<th>Sybase</th>
<th>IBM DB2</th>
<th>MySQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default & Weak</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Passwords</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denial of Services</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>& Buffer Overflows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Misconfigurations</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Misconfigurations

Misconfigurations Can Make Databases Vulnerable

Oracle
 • External Procedure Service
 • Default HTTP Applications
 • Privilege to Execute UTL_FILE

Microsoft SQL Server
 • Standard SQL Server Authentication Allowed
 • Permissions granted on xp_cmdshell

Sybase
 • Permission granted on xp_cmdshell

IBM DB2
 • CREATE_NOT_FENCED privilege granted (allows logins to create SPs)

MySQL
 • Permissions on User Table (mysql.user)
Database Auditing & Forensics
Database Protection Planning: Auditing and Monitoring

1. **Access & Authentication Auditing**
 Who accessed which systems, when, and how

2. **User & Administrator Auditing**
 What activities were performed in the database by both users and administrators

3. **Security Activity Monitoring**
 Identify and flag any suspicious, unusual or abnormal access to sensitive data or critical systems

4. **Vulnerability & Threat Auditing**
 Detect vulnerabilities in the database, then monitor for users attempting to exploit them

5. **Change Auditing**
 Establish a baseline policy for database; configuration, schema, users, privileges and structure, then track deviations from that baseline
Auditing: Vulnerability Assessment & Activity Monitoring

- "Outside in" and "Inside out" scan of all database applications to assess:
 - Security strength
 - Database vulnerabilities
 - Application discovery and inventory
- Fix security holes and misconfigurations
- Develop policies based on results from scan to identify:
 - Database vulnerability
 - Roles and responsibilities functionality to segregate users
 - Compliance risk factors
- Auditing
 - Comprehensive reporting
- Real-Time Monitoring
 - Defend against misuse, fraud, and abuse from internal and external users
 - Monitor all user activity and system changes (DDL, DML, DCL)
 - Tune detection parameters to capture events while bypassing false positives
Database Security
Best Practices
Data Security Risk and Compliance Life Cycle

<table>
<thead>
<tr>
<th>Lifecycle Component</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discover</td>
<td>Produce a database or asset inventory</td>
</tr>
<tr>
<td>Classify</td>
<td>Finds sensitive data to determine business value of systems and associated regulatory requirements</td>
</tr>
<tr>
<td>Assess</td>
<td>Scan databases for vulnerabilities, misconfigurations / configuration changes, and user entitlements</td>
</tr>
<tr>
<td>Prioritize</td>
<td>Combine info from classify and assess phases to determine what to fix, what to mitigate through compensating controls (monitoring), and in what order to do the work</td>
</tr>
<tr>
<td>Fix</td>
<td>Create and run fix scripts, apply patches, create monitoring policies to implement compensating controls</td>
</tr>
<tr>
<td>Monitor</td>
<td>Audit privileged access and access to sensitive data. Monitor for exploits and suspicious or unusual behavior</td>
</tr>
</tbody>
</table>
Best Practices Methodology
Database Security Best Practices

Assess Security Posture
- Assess database security risks
- Determine processes, applications and systems affected
- Prioritize risk and establish work plan

Address Risk
- Document risks and controls
- Align business and IT goals
- Develop business case for investment in security

Establish Controls
- Set responsibilities and accountability
- Establish mechanisms for reporting and assessment
- Apply the principle of least privilege and role based access controls
- Implement policies and procedures to minimize exposure

Implement Monitoring
- Implement the program
- Monitor risks and controls
- Distribute reports to provide perspective to executive teams
- Test and remediate
- Audit and attest
- Measure and monitor readiness
How Do You Secure Databases?

• Start with a Secure Configuration
• Stay Patched
 – Stay on top of all the security alerts and bulletins
• Implement the Principal of Least Privilege
 – Review User Rights to ensure all access is appropriate
• Defense in Depth / Multiple Levels of Security
 – Regularly scan your databases for vulnerabilities
 • Fix the problems reported!
 – Implement database activity monitoring…
 – …and database intrusion detection
 • Especially if you can’t stay patched!
 – Encryption of data-in-motion / data-at-rest
Audit Your Database Environment TODAY!

Check for object and system permissions:
- Check views, stored procedures, tables, etc. permissions.

Look for new database installations:
- Specifically third party database installations.

Search for users with DBA privileges:
- This helps to detect intrusions, elevation of privileges, etc.

Audit database configuration and settings:
- If security configurations or settings are changed for instance by a system upgrade, patch, etc.

Check database system objects against changes:
- Detecting system changes you haven't applied could mean that a rootkit is present.
HOW TO: Protect Against Attacks

Set a good password policy:
• Use strong passwords or passphrases.

Keep up to date with security patches:
• Try to install patches as fast as you can. Database vulnerabilities are serious and sometimes a database server can be easily compromised with just a simple query.
• Always test patches for some time on non-production databases.

Protect access to the database server:
• Allow connections only from trusted hosts and block non used ports and outbound connections. Establish exceptions for special instances like replication, linked databases, etc.

Disable all non used functionality:
• Excess functionality can lead to vulnerabilities

Use selective encryption:
• At network level: use SSL, database proprietary protocols.
• At file level for backups, laptops, etc.
HOW TO: Protect Against Attacks

Set a good password policy:
• Use strong passwords or passphrases.

Keep up to date with security patches:
• Try to install patches as fast as you can. Database vulnerabilities are serious and sometimes a database server can be easily compromised with just a simple query.
• Always test patches for some time on non-production databases
HOW TO: Protect Against Attacks

Protect access to the database server:
- Allow connections only from trusted hosts and block non used ports and outbound connections. Establish exceptions for special instances like replication, linked databases, etc.

Disable all non used functionality:
- Excess functionality can lead to vulnerabilities

Use selective encryption:
- At network level: use SSL, database proprietary protocols.
- At file level for backups, laptops, etc.
HOW TO: Periodically Audit Database Systems

Check for object and system permissions:
- Check views, stored procedures, tables, etc. permissions. Check file, folder, registry, etc. permissions. Changes on permissions could mean a compromise or mis-configuration.

Look for new database installations:
- Third party products can install database servers and new installed servers could be installed with blank or weak passwords, un-patched, mis-configured, etc. Detect new database installations and secure or remove them.

Search for users with DBA privileges:
- This helps to detect intrusions, elevation of privileges, etc.
HOW TO: Periodically Audit Database Systems

Audit database configuration and settings:
• If security configurations or settings are changed for instance by a system upgrade, patch, etc. your databases could be open to attack. If they change and there wasn't a system upgrade then it could mean a compromise.

Check database system objects against changes:
• If you detect a change in a system object and you haven't applied a fix or upgrade to your database server it could mean that a rootkit is present.
Advantages of Off-database Auditing

- **Native database auditing has its disadvantages**
 - Must be enabled and configured on each system individually
 - Separation of controls/ Segregation of Duties?
 - Can be solved with audit management tools (aka Audit Vault)

- **Native auditing**
 - Can be disabled or deleted by attacker in the database
 - Most databases have NO auditing configured
Advantages of Off-database Auditing

• *3rd-party security tools provide improved auditing*
 • Most importantly, they protect and store the audit trail

• *Focus attention on critical issues*
 • Highlights potentially suspicious activity
 • Differs from volumes of audit logs
 • Operationally efficient
 • Indicates possible need for action
 • Helps eliminate false-positive responses
 • Preserves resources, staff, time and money
Audit & Threat Management Recommendations

- Perform Database Auditing and Intrusion Detection
 - Implement real-time monitoring
- Integrate with native database audit by scanning logs
- Integrate with audit management tools
- Implement real-time alerting (SIEM integration)
- Keep a library of best-practice implementation information
Database Security Info from AppSecInc

• White Papers
 • SQL Server Forensics
 • Database Activity Monitoring
 • Search Engines Used to Attack Databases
 • Introduction to Database and Application Worms
 • Hunting Flaws in Microsoft SQL Server

• Presentations
 • Protecting Databases
 • Hack-Proofing MySQL, IBM DB2, Oracle9iAS
 • Writing Secure Code in Oracle
 • Addressing the Insider Threat to Database Security

• Security alerts
 – www.appsecinc.com/resources/mailinglist.html
Additional Resources

Database Security Controls – a joint study by Application Security, Inc & Enterprise Strategy Group

Market Share: Database Management Systems Worldwide, 2007 (Gartner)
www.gartner.com

2009 US Cost of a Data Breach Study
www.encryptionreports.com

http://securityblog.verizonbusiness.com

Security alerts:
www.appsecinc.com/resources/mailinglist.html
Questions?
– Vulnerabilities?
– Locking down the database?
Email our security experts at:
asktheexpert@appsecinc.com

blog.appsecinc.com
Database Security Best Practices with DbProtect