Auditing Big Data - Internal Audit Role

Sajay Rai, CPA, CISSP, CISM
sajayrai@securelyyoursllc.com
Auditing Big Data

- What is BIG data?
- Business Significance of Big Data
- Opportunities of Big Data in Insurance
- V’s of Big Data?
- Auditors’ Responsibilities
- Big Data Audit Constraints
- Big Data Audit Approach
- Risks / Audit Controls
What is Big data? - Definition

Google

- Extremely large data sets that may be analyzed computationally to reveal patterns, trends, and associations, especially relating to human behavior and interactions.

Graphic from bigdatasp.com
What is Big data? - Architecture

- Many sources of data
- Many communication links
- Many different hardware
- Many types of reports
- Many different users
Business Significance of Big data

- New product development and faster go-to-market
- Strategic advantage
- Increased revenue / market share
- Cost reductions
- Time reductions creating operational efficiency
- Smarter business decisions and ability to do better market demand products

EXAMPLES
- Amazon
- Netflix
- Walmart
Insurance Example:
Opportunities of Big data

- Better Customer engagement
- Far more information around risks for Marketing, underwriting and pricing
- Enriched context around claims and claimants
- Insights from analysis of trends
- Brand protection, marketing opportunities, fraud detection and sentiment analysis
- Predictive analytics in claims
INSURANCE EXAMPLE:
Predictive analytics in Claims

- Forecast Medical costs
- Predict likelihood of return to work
- Identify litigation indicators
- Identify early settlement indicators
- Detect potential fraud earlier in the process
- Review incoming claims to route to appropriate adjuster
- Optimize workload across internal and external adjustors
Original 3 v’s* of big data: Volume

- Originally coined by Doug Laney, 2001
- Graphic from www.rosebt.com
Original 3 v’s* of big data: Variety

- Originally coined by Doug Laney, 2001
- Graphic from 1.bp.blogspot.com
Original 3 v’s* of big data: VELOCITY

- Originally coined by Doug Laney, 2001
- Graphic from blog.lionbridge.com
Original 3 v’s* At A Glance

- Graphic from CaseWare IDEA, INC.
Audit Implications of the 3 “V”s

- **Volume of data** – Share amount of data
 - *Audit sample*
 - *Continuous monitoring*

- **Variety of data** – mixing many sources and types of data
 - *Access control for the different data sources and type*
 - *Data classification*

- **Velocity of data** – rate of data accumulation
 - *Is the required audit data retained?*
 - *Are historical data retained past policy?*
Additional 4 v’s* of big data: Veracity

Quality of data – data must be accurate and in context

- From Mark van Rijmenam’s “Why the 3 V’s are not sufficient to describe big data”.
- Graphic from www.iri.com
Additional 4 v’s* of big data: Variability

- Meaning of data.
- Big data is always changing.
- Variability is relevant in performing sentiment analyses.

*From Mark van Rijmenam’s “Why the 3 V’s are not sufficient to describe big data”.
*Graphic from vint.sogeti.com
Additional 4 v’s* of big data: Visualization

Visually depicting data – analytic results are hard to interpret. Graphs and pictures highlight additional insights.

- From Mark van Rijmenam’s “Why the 3 V’s are not sufficient to describe big data”.
- Images from www.sas.com, www.businessweek.com, www.hpi.org.uk
Additional 4 v’s* of big data: Value

Data improving outcomes – when analytics are translated to action

* From Mark van Rijmenam’s “Why the 3 V’s are not sufficient to describe big data”.
Preparing For big data

- Alignment of strategic plans, resources and technology solutions to requirements
- Governance – unclear roles responsibilities and requirements
- Time to implement
- Inadequate training and support
- Single points of failure
- Inappropriate access to data
Auditors’ Responsibilities

● Verify that big data objectives align with organization’s goals
● Educate the audit committee
● Provide multiple or continuous auditing
● Become an advisor to the big data team
 ● Perform pre- and post implementation informal reviews
 ● Review processes
 ● Review technology
● Determine if big data should be leveraged for auditing
● Define measurement criteria for success and security
Big Data Audit Constraints

- System is not homogenous
- Data is both structured and unstructured
- Sources of data are many
 - Geographic locations
 - Internal and external
- Access points to data are many
- Specialized talents required
- Audit and security controls are not part of Big Data design

“Through 2016, fewer than 30% of Hadoop deployments will be secured and governed in accordance with the enterprise’s information governance standards.”
– Gartner
Big Data Audit Approach

- Business Goals
- Presentation
- Communications
- Infrastructure
- Storage & Operating Systems
- Audit Committee
- Security Policies, Standards, & Procedures
- IT Policies, Standards, & Procedures
- Data Sources
- Personnel
- Middle Tier
- Continuous Monitoring
- Continuous Auditing
Key RISK Areas: IT General Controls

- Change Management
 - Coordinated
 - Platforms
 - Systems
 - Vendors
 - Defined change and configuration management policy
 - Documented change and configuration management process
 - Approvals
 - Impact analysis
 - Testing
 - Back-out
 - Must address availability of big data during change
Key RISK Areas: IT General Controls

- Access Controls
 - Defined and approved access control policy
 - Control over access while stored in Big Data
 - Control over analytical assessments more critical
 - Access approval by data owners
 - Data classification and least privilege
 - Periodic access review by data owners coordinated by information security group
 - Separation of duties and role based access
 - Proper control and management of privileged access
 - Proper management of 3rd party vendors/partners
Key RISK Areas: IT General Controls

- System Development Life Cycle
 - Security check-point during development
 - Source vulnerability scan before introduction to production
 - Source code control during and after development
 - Integration with change management
 - Defined services and system acquisition policy and procedure
 - Defined policy and procedure for external information system services
 - Protection of data supply-chain
Key RISK Areas: IT General Controls

- IT and Security Operations
 - Documented backup policy and procedures
 - Documented incident and problem management policies and procedures
 - Audit log collection and monitoring
 - Periodic vulnerability scans and penetration tests
Key RISK Areas: Program governance

Risk: Failure or lack value

<table>
<thead>
<tr>
<th>Control Area</th>
<th>Test Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment to business goals and funding</td>
<td>• Defined objectives aligned to business goals</td>
</tr>
<tr>
<td></td>
<td>• Defined, implement, and monitor measurement metrics</td>
</tr>
<tr>
<td></td>
<td>• Defined customer-centric service level agreement (SLA)</td>
</tr>
<tr>
<td></td>
<td>• Proper business and technical requirements</td>
</tr>
<tr>
<td></td>
<td>• Properly executed proof-of-concept (POC) and pilot</td>
</tr>
<tr>
<td>Roles and Responsibilities</td>
<td>• Roles and responsibilities for internal personnel</td>
</tr>
<tr>
<td></td>
<td>• Roles and responsibilities for business partners/vendors</td>
</tr>
<tr>
<td>3rd Party Vendors</td>
<td>• Provision for security</td>
</tr>
<tr>
<td></td>
<td>• Defined SLA and vendor performance monitoring</td>
</tr>
<tr>
<td></td>
<td>• Vendor transition</td>
</tr>
<tr>
<td></td>
<td>• Vendor termination</td>
</tr>
<tr>
<td>Data Governance</td>
<td>• Data management policies and procedures (to be discussed)</td>
</tr>
<tr>
<td></td>
<td>• Definition of metadata</td>
</tr>
<tr>
<td></td>
<td>• Inventory of databases, tables, etc.</td>
</tr>
<tr>
<td></td>
<td>• Defined authoritative data sources</td>
</tr>
</tbody>
</table>

Courtesy of IIA documents
Key RISK Areas: Personnel

Key to a successful big data implementation

<table>
<thead>
<tr>
<th>Resources</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sponsor</td>
<td>Executive level person that can obtain necessary funding</td>
</tr>
<tr>
<td>Business/Data Owners</td>
<td>Functional business people that own the data and have been trained as to what will be required of them</td>
</tr>
<tr>
<td>CDO</td>
<td>Chief Data Officer who might be the executive responsible day-to-day management of big data</td>
</tr>
<tr>
<td>CISO</td>
<td>Chief Information Security Officer responsible for securing big data infrastructure and data without hindrance</td>
</tr>
<tr>
<td>Technical Data Analyst</td>
<td>Including developers, DBAs, system administrators, subject matter experts, etc.</td>
</tr>
<tr>
<td>Data Scientist</td>
<td>Analytics professional(s) with a good understanding of the business and the technical tools</td>
</tr>
<tr>
<td>Big Data Architect</td>
<td>Responsible for the design and scalability of big data solutions</td>
</tr>
</tbody>
</table>

Courtesy of IIA documents
Key RISK Areas: Policies & Procedures

Policies, Procedures, and Guidelines

- Ethical collection of data
- Use of sensitive data
 - Data classification
 - Access control
 - Provisioning
 - Access review
- Data ownership
 - Assigned business owners
 - External owners of data
- Awareness and Training
Key RISK Areas: Technology

Risk: Inappropriate and ineffective technologies can result in degradation and/or availability issue

<table>
<thead>
<tr>
<th>Control Area</th>
<th>Test Criteria</th>
</tr>
</thead>
</table>
| Hardware | • Annual capacity planning
 | • Right-sized hardware
 | • Ability to scale based on need
 | • High availability and redundancy |
| Network | • Appropriate bandwidth
 | • Network segregation
 | • Secure transmission
 | • Right-sized devices
 | • Proper, detailed, and up-to-date network documentation |
| Tools | • Appropriate end user tools
 | • User training |
| Notification Engine | • Proper configuration of ETL/ELT tools for timely notification
 | • Verification of record counts and totals
 | • Job failures and problem management |
| Upgrades and Patches | • Procedure for upgrade and patches
 | • Analysis of upgrades and changes for impact |

Courtesy of IIA documents
Key RISK Areas: Availability

Risk: Inappropriate and ineffective technologies can result in degradation and/or availability issue

<table>
<thead>
<tr>
<th>Control Area</th>
<th>Test Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>3rd Party Partners</td>
<td>• Service Level Agreement (SLA)</td>
</tr>
</tbody>
</table>
| Disaster Recovery (DR) | • High availability and redundancy
• Accelerated recovery procedures documented (Triage – Post Mortem)
• Proper and adequate backups |
| Monitoring | • Defined and configured alerts and thresholds
• Documented product support processes
• Problem management processes and procedures
• Escalation process |
| Storage and Retention | • Data retention policy
• Data retention schedule defined and implemented
• Data destruction procedure |
Key RISK Areas: Performance

Risk: Under-performing technologies can result in degradation and/or availability issue

<table>
<thead>
<tr>
<th>Control Area</th>
<th>Test Criteria</th>
</tr>
</thead>
</table>
| Scalability | • Plans for growth
 | • Networking and transmission devices
 | • Storage systems
 | • Data collection systems (e.g. databases)
 | • Procedure to maintain level of performance |
| Performance Testing | • Testing of new and existing analytics
 | • Time results |
| Solution Reassessment | • Periodic reassessment of solutions
 | • Reassessment of data integrity |
Key RISK Areas: Information Security

Risk: Unauthorized access to data, inappropriate modification, and non-compliance to regulations

<table>
<thead>
<tr>
<th>Control Area</th>
<th>Test Criteria</th>
</tr>
</thead>
</table>
| Information Security | • Information security and cybersecurity program
 • Minimum security baseline and system hardening program
 • Access to system and auditing tools
 • 3rd party assessment
 • Patch management process and procedures |
| Data Security | • Information classification and access control based on classification
 • Privileged access management
 • Periodic access review to data by data owners
 • 3rd party access to data properly managed |
| Data Privacy | • Data inventory and classification
 • Sanitization of PII, PHI, and other sensitive data
 • Documented incident management process and procedures |
Key RISK Areas: data Quality/Reporting

Risk: Data quality effect on reporting and management decision making

<table>
<thead>
<tr>
<th>Control Area</th>
<th>Test Criteria</th>
</tr>
</thead>
</table>
| Data Quality | • Quality standards and procedures
• Definition authoritative source of data
• Data integrity in database design
• Time-to-reception of data to big data
• Time-to-delivery of data to analytics |
| Management | • Procedure for the verification purchased data from 3rd parties
• Data and computational integrity
• Timely data availability for decision making |
| Reporting | • Process and procedure for reviewing and approving output from analytics
• Definition of internally and externally consumed data
• Restrictions in modification of report data
• Provision for ‘ad hoc’ reporting
• Process for selecting reporting options (e.g. Tableau, Splunk, etc.) |

Courtesy of IIA documents
Conclusion

- Create an enterprise-wide and holistic view of big data implementation
- Educate the audit committee and executive management
- Implement a continuous audit of big data or several single audits
 - You may need a dedicated group of auditors
- Review Confidentiality, Integrity, and Availability of big data systems and data
- Verify that big data implementation has the right people
SEE, I TOLD YOU THAT BIG DATA WAS TOO SCARY

Workforce Innovation That Works™

KRONOS.com
QUESTIONS / DISCUSSIONS