Mobile Payment Services - Security Risks, Trends and Countermeasures
Agenda

- Trends in mobile payments
- Security risks in mobile payments applications and devices
- Mitigation strategy through secure SDLC
- Mobile security best practices

Disclaimer:
This session is intended to educate about security best practices for payment applications and devices. Indicative security risks mitigation practices are given to address it during SDLC.
Trends in Mobile Payments
Trends in Mobile Payments

- Mobile payments in US alone predicted to reach $37 billion in 2015 and $808 billion by 2019\(^1\)
- Technology companies currently dominate
- Payment methods:
 - Contactless payments
 - Cardless cash withdrawal
 - QR code payments
 - Wearable payments

1: Business Insider, BI Intelligence, US in-store mobile payments volume, June 2015
Mobile Payments Architecture

Contactless Payments

User

Mobile / Wearable device

Contactless mobile payment terminal

Wireless

Ethernet

Back-end infrastructure

Wireless

Mobile payment application

Mobile Banking

Mobile Banking
Attack Vectors against Mobile Payment Devices

- **Compromise of the mobile payment device**
 - Phishing
 - Attacks directed through physical interfaces (USB)
 - Attacks directed through wireless interfaces (e.g. Wifi, Bluetooth, NFC, …)

- **Compromise of the mobile payment application**
 - Mobile application security vulnerabilities
 - Local device storage vulnerabilities
 - Server side web application or web services security vulnerabilities

- **Compromise of the payment terminal infrastructure**
 - Direct attacks against wireless or physical interfaces
 - Infrastructure security vulnerabilities
 - Embedded device security vulnerabilities
 - Application security vulnerabilities

- **Compromise of the back-end infrastructure**
Common Security Vulnerabilities

- Insecure fingerprint/card/iris data in storage / transit - captured through add-on devices
- Insecure Connection with Parent Device

- Weak access control to protect application functionality
- Weak authentication or session management
- Weak control to prevent interception and manipulation of message traffic
- Injection vulnerabilities due to improper coding practices

- Weak authentication and authorisation controls
- Missing OS patches
- Insufficient OS configuration hardening

- Weak encryption / clear text or encoded payloads
- Insufficient message integrity checks
- Lack of replay protection
- Missing transaction authentication checks

- Insecure storage of critical information
- UI impersonation though local data storage manipulation

- Insecure cryptography key storage and usage
- Data logging information disclosure
Security risks in Mobile Payments Apps, Devices, Communication Channels & Add-on Devices
Mobile Device Risks

I. Direct attack via physical interfaces (USB)

Wirelurker
- Malware that monitors for, and attacks iOS devices via USB on OSX
- Installs third-party applications or automatically generated malicious applications onto the device
- On non-jail broken iOS devices through enterprise provisioning. Creation of enterprise provisioning profiles on their non-jail broken iPhones and iPads. A user would then need to manually launch the installed app, then tap "Trust"
II. Direct attack against wireless interfaces

Mobile Pwn2own
- Every year at Mobile Pwn2own security researchers aim to obtain remote privileged access to the latest generation of smartphones, either through a browser based exploit, or through an attack against the wireless interfaces (e.g. Wifi, Bluetooth, NFC).
- Last event mobile Pwn2own event outcome:
 - Android: Privileged access from NFC and Wifi
 - iPhone: Privileged access from Wifi/Browser

Bluetooth LE
- Used by wearable devices
- Key exchange can be intercepted and traffic decrypted
Major risks in Mobile Applications

I. Insecure data storage

- Important data is not stored encrypted by the application (e.g. application configuration files, back-end database)
- Reliance on operating system security controls alone (e.g. keychain)
- Allowed privilege escalation within the application
- Allowed unauthorised access to PII

![Authentication credentials](image1)

![SQL database credentials](image2)

![Plaintext application configuration settings](image3)
Major risks in Mobile Applications

II. Insecure payload

- Access to payment devices settings, transaction information that can be tampered with in transit
Major risks in Mobile Applications

III. Reverse engineering

- Payment device root/jailbreak
- Extract mobile application from the payment device
- Use decompilers and disassemblers to application source code and understand business logic
- Sensitive data disclosure
 - e.g.: Extract certificates to bypass authentication
- Patch the application
 - e.g.: Always accept biometrical authentication (e.g. Touch ID)
 - e.g.: Disable jailbreak detection, application integrity checks, certificate pinning, debugger detection
Major risks in Payment Devices

I. Unrestricted access to setting

- No kiosk mode
- Access to device settings
- Root this device
- View change file structure, settings, database
- Access mobile payment application binary
- Access logs
Major risks in Payment Devices

II. Communication Channels – Application SMS

- Application SMS
- Configure GSM Modem with Valid MSISDN
- Capture the SMS
- View /Modify SMS
- This is restricted scenario – Need SMSC, Application SMS generation and Older SMPP protocol Support
Major risks in Payment Devices

III. Communication Channels – USSD

- USSD Aggregators
- USSD is secure over GSM channel
- Review USSD data at aggregators
- Review data in transit from aggregators to payment gateways
- Attempt XML injections

Analyse XML payload and perform XML injection

```
<?xml version= "1.0" ?>
<!DOCTYPE COMMAND PUBLIC "-//Ocam//DTD XML Command COMMAND">
<TYPE>Q</TYPE>
<MSISDN>+919812345678</MSISDN>
<SRCACC>6789</SRCACC>
<AMOUNT>150</AMOUNT>
<MPIN>1234</MPIN>
<LANGUAGE>1</LANGUAGE>
```
Major risks in Payment Devices

IV. Communication Channels – Bluetooth

- Bluetooth device is integrated on the payment device
- Verify pairing mechanism
- Verify discovery
- Verify auto-connect
Major risks in Payment Devices

v. Add-on devices – Fingerprint Scanner & Printers

- Fingerprint Validations
- Printer discovery and connections
- Fingerprint data storage
- Fingerprint data in transit

Printer Pairing without PIN / CODE and invalid receipt print

Fingerprint data storage and data transfer
Mitigation Strategy through Secure SDLC
main()
{
 int i=7;
 printf("%d",i++*i++);
}
Common mistakes in source code

During payment application’s source code development, below are common mistakes:

1. Hardcoded sensitive data
2. Cryptography usage
3. Exception & Error Handling
4. Logging
5. Improper Code Signing
6. Permissions
7. Configuration Files
8. Session Management

- **Hardcode PII, Cryptography Keys**
- **Clear text messages, payloads**
- **Session Management & Secure Release**
 - Manifest Files
 - Permissions
 - Device Logs
 - Code Signing
 - Session management in on-offline modes
Secure SDLC Approach

Define Security Principals ➔ Secure Development ➔ Assess, Remediate and Secure Release

Secure Design
- Understanding mobile payment eco-system, business logic and customer usage
- Understanding attack surface

Secure Development
- Mobile Apps
 - Design local storage, communication channels and Platforms security

Secure Code
- Payment Devices
 - Design device OS and App security
- Source Code
 - Apply OWASP Mobile Security guidelines in source code development

Secure Release
- Ensure code signing, server security, device security controls and incidence management

Assessment & Remediation
- Assess Device and Apps and remediate security findings. Implement reusable components
Mobile Security best practices
Mobile Security – Best Practices

- Secure distribution and provisioning
- Secure data integration
- Prevent access to paid resources
- Secure backend services
- Protect data in transit

Securing Mobile Apps

Authentication
Authorisation
Session management
Binary protection
Data Storage & Protection
Mobile Security – Best Practices

Authentication, Authorization and Session Management

- Strong password policy
- Validate password and sessions if application needs to work in offline mode
- Use salted password
- CAPTCHA during registration
- Unique session tokens to form valid and unique message payloads
- NIST approved encryption/hashing algorithms
- Two factor authentication (in case of financial transactions to be performed.)
- Lower timeout for inactive session
- Server-side authentication for sensitive transactions.
- Validate all messages/payloads received at backend / mobile application server and prevent message replay attacks. These messages/payloads should be encrypted and should have combination of padding elements, session identifiers and timestamps.
Mobile Security – Best Practices

- **Binary protection**
 - **Obfuscate** all sensitive application code using either 3rd party commercial software or open source solutions where feasible
 - Implement **anti-debugging techniques**
 - Ensure **logging** is disabled as logs may be interrogated other applications with read logs
 - Hide executable code using **Address Space Layout Randomization (ASLR)**
 - Implement jailbreak detection
Mobile Security – Best Practices

Data Storage and Protection

- Implement **data encryption/hashing** on the device and server.
 - Sensitive local data storage encrypted with user secret that encrypts the data encryption key.
- Use **NIST** approved encryption standard algorithms to encrypt the sensitive data.
- **Encryption keys** shall never be in RAM. Instead, keys should be generated real time for encryption/decryption as needed and discarded each time.
- No sensitive data (e.g. passwords, keys etc.) in **cache or logs**.
- Use **remote wipe** APIs.
- Do not reveal **UDID, MSISDN, IMEI** and PII.
Mobile Security – Best Practices

- Secure backend services and the platform
 - Implement Secure Backend API’S or services
 - Secure data transfer between the mobile device and web-server back-ends and other external interfaces
 - Server and infrastructure hardening
 - Maintain and monitor application server logs
 - Access control for mobile platform
Mobile Security – Best Practices

- **Protect Data in Transit**
 - Use secure communication channels
 - Use CA provided Certificates
 - Do not disable or ignore SSL chain validation
 - Verify communication channels (USSD, SMS, GPRS, IVRS) security (e.g. Secure SMP protocol usages in case of SMS)
Mobile Security – Best Practices

- Secure data integration with third party services and applications
 - Validate the third party code/libraries integration
 - Consent mechanism during application install, data transit and opt-out functionalities.
Mobile Security – Best Practices

- Prevent unauthorised access to paid-for resources
 - Restrict use of internal APIs (premium rate phone calls, roaming data, NFC payments) to have privileged access on the user’s device
 - Ensure that wallet API call backs do not pass clear text account/pricing/billing/item information.
 - Logs shall be protected from unauthorized access.
 - Check for anomalous usage patterns in paid-for resource usage and trigger re-authentication
Mobile Security – Best Practices

- Secure distribution and provisioning of mobile applications
 - Provide applicable security updates, code fixes regularly
 - Distribute properly signed apps through authorized download centres only
Summary of Top Practical Mitigations

- Identify the attack surface
 - Payment system entry points, interfaces, protocol handlers, libraries
- Follow secure software development standards
- Apply defense in depth principles and lock down each individual component that make up the payment system
 - Minimise entry points
 - Minimise network services / interfaces
 - Minimise libraries / plugins / third party components
 - Minimise local data storage requirements
 - Utilise minimal privileges/permissions
 - Apply access control restrictions
- Assess all possible attack vectors
Thank You!

- Suhas.desai@in.pwc.com